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Abstract. The exact dynamics of N two-level atoms coupled to a common electromagnetic bath and
closely located inside a lossy cavity is reported. Stationary radiation trapping effects are found and very
transparently interpreted in the context of our approach. We prove that initially injecting one excitation
only in the N atoms-cavity system, loss mechanisms asymptotically drive the matter sample toward a
long-lived collective subradiant Dicke state. The role played by the closeness of the N atoms with respect
to such a cooperative behavior is brought to light and carefully discussed.

PACS. 03.65.Yz Decoherence, open systems, quantum statistical methods – 03.67.Mn Entanglement
production and manipulation – 42.50.Fx Cooperative phenomena in quantum optical systems

1 Introduction

It is well-known that entangled states of two or more par-
ticles give rise to quantum phenomena that cannot be ex-
plained in classical terms. The concept of entanglement
was indeed early recognized as the characteristic trait of
the quantum theory itself. For this reason much interest
has been devoted by many physicists, both theoreticians
and experimentalists, toward the possibility of generat-
ing entangled states of bipartite or multipartite systems.
To produce and to be able to modify at will the degree
of entanglement stored in a system is indeed a desirable
target to better capture fundamental aspects of the quan-
tum world. Over the last decade, moreover, it has been
recognized that the peculiar properties of the entangled
states, both pure and mixed, can be usefully exploited as
an effective resource in the context of quantum informa-
tion and computation processing [1–4]. Such a research
realm has attracted much interest since it becomes clear
that quantum computers are, at least in principle, able to
solve very hard computational problems more efficiently
than classical logic-based ones. The realization of quan-
tum computation protocols suffers anyway the difficulty
of isolating a quantum mechanical system from its envi-
ronment. Very recently, however, nearly decoherence-free
quantum gates have been proposed by exploiting, rather
than countering, the same dissipation mechanisms [5–12].
The main requirement to achieve this goal is the exis-
tence of a decoherence-free subspace for the system under
consideration. In the same spirit it has been recognized
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that transient entanglement between distant atoms can
be induced by atomic spontaneous decay [13] or by cav-
ity losses [14]. In reference [14] it has also been demon-
strated that asymptotic entangled states of two closely
separated two-level atoms in free space can be created as
consequence of the spontaneous emission process.

In this paper we present a new path along which loss
mechanisms act constructively inducing a collective Dicke
behavior in a multiatom sample. In references [15,16] mul-
tistep schemes to generate a set of Dicke states of multi
Λ-type three level atoms are reported. In these procedures
the key point is the possibility of successfully incorporat-
ing the presence of cavity losses in the theory, neglecting
on the contrary atomic spontaneous emission.

In order to reach our scope we consider a material sys-
tem of N identical two-level atoms closely placed inside
a resonant bad cavity taking also into account, from the
very beginning, the coupling between each atom and the
external world. Exactly solving the master equation gov-
erning the dynamics of the system under scrutiny, suppos-
ing that only one excitation has been initially injected in
it, we show that the system of the N two-level atoms may
be guided, with appreciable probability, toward a nontriv-
ial stationary condition describable as a Dicke state having
the form | S,−S〉 with S = (N − 2)/2, S being the total
Pauli spin operator of the atomic sample. In addition, ex-
ploiting the knowledge of the exact temporal evolution of
the matter-cavity reduced density matrix, we propose an
analytical route to follow up some physically transparent
aspects characterizing the entanglement building up pro-
cess in the passage from a chosen totally uncorrelated ini-
tial situation to the manifestly entangled asymptotic one.
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The treatment followed in our paper enables to catch the
physical origin of the stationary collective Dicke behavior
of the system. In addition it has the virtue to provide a
transparent way to understand the key role played by the
loss mechanisms and by the closeness of the atoms in the
phenomena brought to light.

The paper is organized as follows. The next section is
devoted to an accurate presentation of our physical model
and to the formulation of the relative master equation
for the matter-cavity reduced density operator. An appro-
priate unitary change of this operator variable provides,
in Section 3, the mathematical key tool for exactly solv-
ing a Cauchy problem in the one-excitation subspace of
N atoms-resonator Hilbert space. The two successive sec-
tions contain the main results of this paper. The entangle-
ment formation process is addressed in Section 4 studying
the time evolution of the Wootters concurrence [17,18]
relative to a generic pair of two-level atoms. Section 5, in
turn, brings to light the occurrence of stationary collec-
tive Dicke subradiant behaviour of our matter subsystem.
The last section contains some final remarks as well as
a discussion on the experimental implementation of the
physical conditions assumed in the paper.

2 The physical system and its master
equation

As previously said, our system consists of N identical
two-level atoms within a single-mode cavity. Indicate the
atomic frequency transition and the cavity mode fre-
quency by ω0 and ω respectively and suppose ω0 ∼ ω. As-
sume, in addition, that all the conditions under which the
interaction between each atom and the cavity field is well
described by a Jaynes Cummings (JC) model, are satis-
fied [19]. Thus, the unitary time evolution of the system we
are considering is governed by the following Hamiltonian:

HAC = �ωα†α+ �
ω0

2

N∑

i=1

σ(i)
z + �

N∑

i=1

[
ε(i)ασ

(i)
+ + h.c.

]
.

(1)
In equation (1) α and α† denote the single-mode cav-
ity field annihilation and creation operators respectively,
whereas σ(i)

z , σ(i)
± (i = 1, ...N) are the Pauli operators of

the ith atom. The coupling constant between the ith atom
and the cavity mode is denoted by ε(i).

It is easy to demonstrate that the excitation number
operator N̂ defined as N̂ = α†α+(1/2)

∑N
i=1 σ

(i)
z +N/2 is

a constant of motion being [N̂,HAC ] = 0. Thus, prepar-
ing the physical system at t = 0 in a state with a well
defined number of excitations Ne, its dynamics is con-
fined in a finite-dimensional Hilbert subspace singled out
by this eigenvalue of N̂ . In a realistic situation, however,
the system we are considering is subjected to two impor-
tant sources of decoherence. The first one is undoubtedly
related to the fact that photons can leak out through the
cavity mirrors due to the coupling of the resonator mode
to the free radiation field outside the cavity. Moreover

the atoms present inside the resonator can spontaneously
emit photons into non-cavity field modes. The microscopic
Hamiltonian taking into account these loss mechanisms
may be written in the form [20]

H = HAC +HR +HAR +HCR (2)

where

HR = �

∑

k,λ

ωk,λ

[
c†k,λck,λ + c̃†k,λc̃k,λ

]
(3)

is the Hamiltonian relative to the environment,

HAR =
∑

k,λ,i

[
g
(i)
k,λc̃k,λσ

(i)
+ + h.c.

]
(4)

describes the interaction between the atomic sample and
the bath and, finally,

HCR =
∑

k,λ

[
sk,λck,λα

† + h.c.
]

(5)

represents the coupling between the environment and the
cavity field. In equation (3) we have assumed, as usual [12],
that the two subsystems, theN atoms and the single-mode
cavity, see two different reservoirs. In equations (3–5) the
boson operators relative to the atomic bath are denoted
by {c̃k,λ, c̃

†
k,λ} whereas ck,λ, c

†
k,λ are the (k, λ) mode anni-

hilation and creation operators respectively of the cavity
environment. Moreover, the coupling constants {sk,λ} are
phenomenological parameters whereas

g
(i)
k,λ = −i

(
2π�ω2

0

V ωk

) 1
2

(ekλ · d)eik·ri (6)

stems from the electric dipole approximation [21]. In equa-
tion (6) ekλ represents the polarization vector of the
atomic thermal bath (kλ) mode of frequency ωk, V its
effective volume, d is the electric dipole matrix element
between the two atomic levels and, finally, ri is the posi-
tion of the ith atom. Indicate now by d̂ and r̂ij two unit
vectors along the atomic transition dipole moment and
the atomic distance rij = ri − rj , respectively.

Following standard procedures based on the Rotating-
Wave and Born-Markov approximations [22,23], it is pos-
sible to prove that the reduced density operator ρAC rel-
ative to the bipartite system composed by the N atoms
subsystem and the single-mode cavity, evolves nonunitar-
ily in time in accordance with the following Lindblad mas-
ter equation [24]:

ρ̇AC = − i

�
[HAC +HLS , ρAC ] + LfρAC + LAρAC (7)
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where

HLS =
∑

i,j

Ωijσ
+
i σ

−
j (8)

Ωij =
3
4
Γ

{
[(d̂ · r̂ij)2 − 1]c

cos(ω0
c rij)

ω0rij

+ [1 − 3(d̂ · r̂ij)2]
[
c2

sin(ω0
c rij)

(ω0rij)2
+ c3

cos(ω0
c rij)

(ω0rij)3

] }

(9)

LfρAC = k(2αρACα
† − α†αρAC − ρACα

†α) (10)
LAρAC =

N∑

i=1

Γii

(
2σ(i)

− ρACσ
(i)
+ − σ

(i)
+ σ

(i)
− ρAC − ρACσ

(i)
+ σ

(i)
−

)

+
N∑

i,j=1(i�=j)

Γi,j

(
2σ(i)

− ρACσ
(j)
+

− σ
(i)
+ σ

(j)
− ρAC − ρACσ

(i)
+ σ

(j)
−

)
. (11)

We point out that both the two baths entering in our
model are supposed in thermal states at T = 0.

The decay rate k appearing in equation (10) is given by

k =
∑

kλ

|skλ|2δ(ωk − ω). (12)

Moreover in equation (11) the N2 coupling constants

Γii ≡ Γ =
4π�ω3

0 |d|2
3c3

(13)

Γij = Γji = Γfij i �= j (14)

related to the spontaneous emission loss channel, define
the spectral correlation tensor Γ [22].

In equation (14) the function fij is defined as follows:

fij =
3
2

{ [
1 −

(
d̂ · r̂ij

)2
]
c
sin(ω0

c rij)
ω0rij

+
[
1 − 3(d̂ · r̂ij)2

] [
c2

cos(ω0
c rij)

(ω0rij)2
− c3

sin(ω0
c rij)

(ω0rij)3

] }
.

(15)

It is important to underline that the last term appearing
in the right hand side of equation (11), is a direct con-
sequence of the fact that we have considered, from the
very beginning, a common bath for the N atoms. As we
shall see, this term is responsible for cooperative effects
among theN atoms leading to the possibility of generating
asymptotic entangled states of the atomic sample, immune
from decoherence. We wish to stress that the consideration
of a common bath becomes a necessary requirement when
the atoms are closely separated. If indeed the distance
among the atoms became large enough (rij � c/ω0), these

cooperative effects, as deducible from equation (15), would
disappear so that the dynamics of the system could be
equivalently obtained considering N different reservoirs,
one for each two-level atom. In such a situation the system
would evolve toward its vacuum state with no excitation.

3 One-excitation exact dynamics

In what follows we assume that the atoms within the cav-
ity are located at a distance smaller than the wavelength
of the cavity mode (rij � c/ω0), thus legitimating the
henceforth done position ε(i) ≡ ε for any i.

It has been shown [24,25] that under the hypothesis
of a small atomic sample, that is when the atoms are
confined in a region smaller than an atomic wavelength,
the Γij (i �= j) coefficients defined by equations (14)
and (15) tend toward the constant value Γ as given by
equation (13) whereas the retarded dipole-dipole interac-
tion terms, those proportional to Ωij and given by equa-
tion (8), are replaced by static dipole-dipole interaction
ones thus keeping a rij dependence [24]. Following the
original idea and in the spirit of the seminal paper of
Dicke [26] we take Ωij independent from (ij) and equal to
an average value ΩL whose explicit expression is obviously
related to the precise atomic sample configuration.

Under this hypothesis we solve equation (7) exploiting
the unitary operator U [27] defined as

U =
N∏

i=2

Ui (16)

where

Ui = eδi(σ
1
+σi

−−σ1
−σi

+) i = 2, ..., N (17)

with δi = − arctan(1/
√
i− 1) and [U, N̂ ] = 0. It is easy

to demonstrate that, if no more than one excitation is
initially stored in the atom-cavity physical system

U †σ(i)
+ U =

√
i− 1
i

σ
(i)
+ −

N∑

l=i+1

√
1

l(l − 1)
σ

(l)
+ +

1√
N
σ

(1)
+

(18)
for i = 1, ..., N so that

H̃AC ≡ U †HACU

= �ωα†α+ �
ω0

2

N∑

i=1

σ(i)
z + �εeff

[
ασ

(1)
+ + h.c.

]
(19)

with εeff =
√
Nε. Transforming in the Ne = 0, 1 excita-

tion subspace the operator variable ρAC into the new one
ρ̃AC ≡ U †ρACU and taking into account that

H̃LS ≡ U †HLSU = ΩLNσ
(1)
+ σ

(1)
− , (20)
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it is not difficult to convince oneself that

˙̃ρAC = − i

�
[H̃AC + H̃LS , ρ̃AC ]

+ k
(
2αρ̃ACα

† − α†αρ̃AC − ρ̃ACα
†α

)

+NΓ
(
2σ(1)

− ρ̃ACσ
(1)
+ − σ

(1)
+ σ

(1)
− ρ̃AC−ρ̃ACσ

(1)
+ σ

(1)
−

)

(21)

in view of equations (7, 16–20). Comparing equation (21)
with equation (7) shows that in the new representation
the correspondent spectral correlation tensor Γ̃ is in di-
agonal form, moreover being Γ̃ii = Γδ1,i. The physical
meaning of this peculiar property is that the atomic sub-
system in the transformed representation looses its energy
only through the interaction of the first atom with both
the cavity mode and the environment. Such a behaviour
stems from the fact that, in view of equation (19), the
other N − 1 atoms freely evolve being decoupled either
from the cavity field and from the electromagnetic modes
of the thermal bath. It is of relevance to underline that the
form assumed by the terms associated to the nonunitary
evolution, appearing in equation (21), directly reflects the
main role played by our way of treating the closeness of
the atoms. It is indeed just this feature which leads, in
the transformed representation, to the existence of N − 1
collective atoms immune from spontaneous emission losses
and, at the same time, decoupled from the cavity mode.
Thus, to locate the atomic sample within a linear dimen-
sion much shorter than the wavelength of the cavity mode,
introduces an essential permutational symmetry property
which is at the origin of a collective replay of the N atoms
such that, even in presence of both the proposed dissipa-
tion routes, the matter subsystem may stationarily trap
the initial energy.

Bearing in mind that [HAC , N̂ ] = 0 and [U, N̂ ] = 0,
it is immediate to convince oneself that, if only one ex-
citation is initially injected into the atomic subsystem,
whereas the cavity is prepared in its vacuum state, at
a generic time instant t, the density operator ρ̃AC , can
have not vanishing matrix elements only in the Hilbert
subspace generated by the following ordered set of N + 2
state vectors:

|0〉|−〉1|−〉2...|−〉N ≡ |β1〉
|0〉|−〉1...|+〉h...|−〉N ≡ |βh+1〉 h = 1, ..., N
|1〉|−〉1...|−〉N ≡ |βN+2〉

where |p〉 (p = 0, 1) is a number state of the cavity mode
and |+〉h (|−〉h) denotes the excited (ground) state of the
hth collective atom (h = 1, ..., N). Equation (21) can
thus be easily converted into a system of coupled dif-
ferential equations involving the density matrix elements
ρ̃hj ≡ 〈βh|ρ̃|βj〉 with h, j = 1, ...N + 2. At this point let’s
observe that from an experimental point of view it seems
reasonable to think that the excitation given at t = 0 to
the matter sample can be captured by ith the atom or
by jth with the same probability. In other words our ini-
tial condition must be reasonably represented as statistical

mixture of states |βh〉, with h ≥ 2, of the form

ρAC(0) =
1
N

N+1∑

h=2

|βh〉〈βh|. (22)

Exploiting equation (18) it is possible to verify that

ρ̃AC(0) ≡ ρAC(0). (23)

After lengthly and tedious calculations and taking into
account equations (22, 23), we have exactly determined
the time evolution of each ρ̃h,j(t) h, j = 1, ..., N+2 finding:

ρ̃AC(t) =




ρ̃11(t) 0 0 ... 0 0

0 ρ̃22(t) 0 ... 0 ρ̃2,N+2(t)

0 0 ρ̃33(t) ... 0 0

...
...

...
...
...
...

...
...

0 0v . ... ρ̃N+1,N+1(t) 0

0 ρ̃∗
2,N+2(t) . ... 0 ρ̃N+2,N+2(t)





(24)

where ρ̃i,j(t) = ρ̃i,j(0) (3 ≤ i, j ≤ N + 1), ρ̃1,1(t) = 1 −∑N+2
i=2 ρ̃i,i(t) and

ρ̃22(t) =
e−(k+NΓ )t

2N(a2 + b2)
[(a2 + b2 + |∆|2) cosh(bt)

+ (a2 + b2 − |∆|2) cos(at)
− 2(b(ω̃0 − ω) − aA−) sin(at)
+ 2(a(ω̃0 − ω) + bA−) sinh(bt)] (25)

ρ̃2,N+2(t) =
εeff e

−(k+NΓ )t

N(a2 + b2)
[Ω(i sin(at) + sinh(bt))

+∆(cosh(bt) − cos(at))] (26)

ρ̃N+2,N+2(t) =
2ε2eff e

−(k+NΓ )t

N(a2 + b2)
[cosh(bt) − cos(at)] (27)

with

a =
{

1
2

[
(ω̃0 − ω)2 + 4ε2eff −A2

−
]

+
1
2

[
((ω̃0 − ω)2 + 4ε2eff −A−)2 + 4(ω̃0 − ω)2A2

−
] 1

2

} 1
2

,

(28)

b =
{
− 1

2
[
(ω̃0 − ω)2 + 4ε2eff −A2

−
]

+
1
2

[
((ω̃0 − ω)2 + 4ε2eff −A−)2 + 4(ω̃0 − ω)2A2

−
] 1

2

} 1
2

,

(29)



S. Nicolosi et al.: Loss induced collective subradiant Dicke behaviour in a multiatom sample 117

and Ω = a + ib = (1/2)[(ω̃0 − ω)2 − A2
− + 4ε2eff +

iA−(ω̃0 − ω)], A− = k − NΓ , ∆ = ω̃0 − ω + iA− and
ω̃0 = ω0 + (N/2)Ω. We wish to emphasize that, on the
basis of the block diagonal form exhibited by ρ̃AC , at a
generic time instant t, the transformed matter-radiation
system is in a statistical mixture of its vacuum density ma-
trix and of an one-excitation appropriate density matrix
describing with certainty the storage of the initial energy.
Equations (25–27), giving the explicit form of the time
evolution of the combined physical system, allow the exact
evaluation of the mean value of any physical observable of
interest and, for instance, to follow the entanglement for-
mation or the progressive raising up of decoherence effect
in the matter-cavity subsystem.

4 Entanglement building up

The circumstance that we succeed in finding the ex-
plicit time dependence of the solution of the master equa-
tion (21), provides a lucky and intriguing occasion to ana-
lyze in detail at least some aspects of how entanglement is
getting established in our exemplary enough multipartite
system. We wish indeed to point out that the question
of how to extend to a generic N -partite physical system
definition and measure of entanglement built for bipartite
systems, constitutes a topical challenge involving many
researchers [28–34]. It is well understood from first princi-
ples that when many subsystems of a multipartite system
individually entangle a prefixed one, the entanglement de-
gree within each pair, anyhow measured, is subjected to
quantitative restrictions [28,31–33]. This, for instance, im-
plies that two maximally entangled subsystems of a multi-
partite system are necessarily disentangled from any other
constituent units of the total system in an arbitrarily given
pure or not state. Of course, whatever the multipartite en-
tanglement definition is adopted, its occurrence is concep-
tually compatible with a complete lack of partial entangle-
ment of a given order for example binary. On the contrary
the existence of entanglement between two specific subsys-
tems has to be considered as a clear symptom of entan-
glement in the multipartite system. Following this line of
reasoning we here therefore propose to study the time evo-
lution of the entanglement within all the possible binary
subsystems that is within each of the N(N − 1)/2 pairs of
individual parts extractable from the N -partite set under
scrutiny. To this end we choose to evaluate the Wootter’s
concurrence [17,18] Cij(t) to characterize quantitatively
the formation of entanglement within the (i, j)th pair of
two-level atoms of our matter sample. Since the dynamical
problem exactly solved in the previous section is invariant
under the exchange of two arbitrary atoms, then one may
guess and indeed easily prove, that the reduced density
matrix

ρ(ij) = TrAij

{
Uρ̃AU

†} (30)

of the (i, j)th pair is structurally independent from the
indices of two prefixed atoms meaning that the substi-
tution of i and j with i′ and j′ respectively, exactly
maps ρ(ij) into ρ(i′j′). The symbol TrAij means to trace

over the atomic variables excluding the pair (i, j) whereas
ρ̃A = Trcavity{ρ̃AC}.

The concurrence Cij(t) is defined as

Cij(t) = max
(

0,
√
λ

(ij)
1 −

√
λ

(ij)
2 −

√
λ

(ij)
3 −

√
λ

(ij)
4

)
,

(31)
where λ(ij)

q (q = 1, ..., 4) are the decreasing-ordered eigen-
values of the matrix

R(ij) = ρ(ij) · ρ(ij) (32)

where the spin flipped matrix ρ(ij) is given by

ρ(ij) = σ(i)
y ⊗ σ(j)

y (ρ(ij))∗σ(i)
y ⊗ σ(j)

y (33)

(ρ(ij))∗ being the conjugate matrix of ρ(ij) [17,18].
In view of the invariance property of ρ(ij), it is not dif-

ficult to persuade oneself that the eigenvalues of R(ij)(t)
are pair-independent, which, as a consequence, implies
Cij(t) = CN−1,N (t) for any i, j = 1, 2, ..., N (i < j). Let’s
then start by extracting the expression of ρ(N−1,N)(t).
Tracing in accordance with equation (30) yields

ρN−1,N (t) = a|−〉N−1|−〉N N−1〈−|N 〈−|
+ b|+〉N−1|−〉N N−1〈+|N 〈−|
+ c|−〉N−1|+〉N N−1〈−|N〈+|
+ d|+〉N−1|−〉N N−1〈−|N 〈+|
+ e|−〉N−1|+〉N N−1〈+|N 〈−|, (34)

where

a =
(

1 − 2
N

)
ρ̃22(t) +

(
N − 3 +

2
N

)
ρ̃N,N(t)

+ ρ̃N+2,N+2(t) (35)

b = c =
N − 2
N

ρ̃22(t) +
N − 1
N

ρ̃N,N(t) (36)

d = e =
1
N

(ρ̃22(t) − ρ̃N,N(t)). (37)

It is now easy to construct and diagonalize R(N−1,N)(t)
finally getting for any pair (i, j) with i < j

Cij(t) =
2|ρ̃22(t) − ρ̃N+1,N+1(t)|

N
∑N+2

i=2 ρ̃ii(t)
. (38)

The c−function Cij(t) is displayed in Figures 1–3 in corre-
spondence to N = 3, 10 and 100 respectively using reason-
able values for the involved parameters [5]. It represents
the conditional concurrence characterizing the temporal
evolution of bipartite entanglement under the hypothesis
that the only photon, initially injected in the system has
not escaped because of loss mechanisms. The fact that
Cij(t) is different from zero at any time instant t > 0
whatever the pair is, undoubtedly reflects the existence of
a process giving rise to the entanglement formation inside



118 The European Physical Journal D

Fig. 1. Conditional binary concurrence Cij(t) in correspon-
dence to N = 3, ε = 105 Hz, k = 104 Hz, Γ = 103 Hz and
ω = ω̃0 = 1014 Hz.

Fig. 2. Conditional binary concurrence Cij(t) in correspon-
dence to N = 10, ε = 105 Hz, k = 104 Hz, Γ = 103 Hz and
ω = ω̃0 = 1014 Hz.

Fig. 3. Conditional binary concurrence Cij(t) in correspon-
dence to N = 100, ε = 105 Hz, k = 104 Hz, Γ = 103 Hz and
ω = ω̃0 = 1014 Hz.

the N−partite system. On the other hand since each atom
turns out to be entangled with all the others, the concur-
rence of each couple of atoms is monotonically decreasing
with N . As already mentioned at the beginning of this
section, this behaviour reflects nothing but the expected
reduction of atom-atom entanglement due to the increase
in the number of possible entangled couples. Albeit Cij(t)
tends to vanish when the number N of atoms goes to in-
finity, we find the remarkable result that the total binary

Fig. 4. Total binary concurrence CBT (t) in correspondence to
N = 3, ε = 105 Hz, k = 104 Hz, Γ = 103 Hz and ω = ω̃0 =
1014 Hz.

Fig. 5. Total binary concurrence CBT (t) in correspondence to
N = 10, ε = 105 Hz, k = 104 Hz, Γ = 103 Hz and ω = ω̃0 =
1014 Hz.

concurrence

CBT (t) ≡
∑

i>j

Cij(t)

=
(N − 1)|ρ̃22(t) − ρ̃N+1,N+1(t)|∑N+2

i=2 ρ̃ii(t)
, (39)

exhibits an oscillatory time behaviour with a decreasing
amplitude around a time-dependent mean value monoton-
ically tending toward the stationary value 1, whateverN is
(see Figs. 4–6). This dynamical property is of relevance be-
cause examples of multipartite system states manifestly
entangled, for which CBT = 0 may be provided [32].
Stated another way, equation (39) tell us that the not
vanishing contribution of the total binary entanglement
to the formation of entanglement within our multipartite
dynamical problem does not scale with N , reflecting that
the N−decrease of each Cij(t) is well compensated by the
quadratic N−increase of the number of pairs. We thus
claim that the behaviour of CBT (t), and in particular its
asymptotic tendency, provides, in our situation, a peculiar
feature helping to describe and understand some aspects
of the entanglement formation in our multipartite system.
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Fig. 6. Total binary concurrence CBT (t) in correspondence to
N = 100, ε = 105 Hz, k = 104 Hz, Γ = 103 Hz and ω = ω̃0 =
1014 Hz.

5 The asymptotic form of ρ̃AC

It is of particular relevance that for

t� (k +NΓ )−1 ≡ τAC (40)

the correspondent asymptotic form assumed by ρ̃AC is
time independent and such that the probability of find-
ing energy in the effective JC subsystem exactly vanishes.
Taking into account the easily demonstrable inequality
b < τ−1

AC , it is immediate to convince oneself that for
t � τAC , equation (24) assumes the following diagonal
asymptotic form

ρ̃AC(t � τAC) =





1
N 0 0 ... 0 0

0 0 0 ... 0 0

0 0 1
N ... 0 0

...
...

...
...
...
...

...
...

0 0 . ... 1
N 0

0 0 . ... 0 0





. (41)

Starting from equation (41) and coming back to the old
representation, it is possible to give at any time instant t
the exact solution ρAC for the reduced density matrix of
the system under scrutiny. Taking into account that the
unitary operator U is time independent, in view of equa-
tion (41)

ρAC = Uρ̃AC(t� τAC)U † (42)

is time independent too. In fact we find that for t� τAC ,
the reduced density matrix can be written in the compact
form

ρAC =
1
N

|β1〉〈β1| + N − 1
N2

N+1∑

h=2

|ψ(h)
T 〉〈ψ(h)

T |

≡ 1
N

|β1〉〈β1| + N − 1
N

ρmix (43)

where

|ψ(h)
T 〉 ≡ 1√

N(N − 1)

{
(N − 1)|βh〉

−
N+1∑

j �=h,j=2

|βj〉
}

≡ |0〉|ϕh
T 〉. (44)

It is worth noting that each normalized state |ϕ(h)
T 〉 given

by equation (44), defines a particular subradiant Dicke
state. It is indeed possible to prove that, whatever N and
h are, the states |ϕ(h)

T 〉 are common eigenstates of Sz and
S− pertaining to eingevalues −(N − 2)/2 and 0 respec-
tively. This property is a sufficient condition to claim that
|ψ(h)

T 〉 is eigenstate of S2 too, having the form |S,−S〉 with
S = (N − 2)/2. This means that

S2ρmixS2 = (S(S + 1))2ρmix (45)

SzρmixSz = S2ρmix (46)

and that each |ψ(h)
T 〉 defines an example of subradiant or

trapped state [26,35–37]. Thus the result expressed by
equation (43) suggests that a statistical mixture of station-
ary subradiant Dicke states of the atomic sample, having
well defined values of S2 and Sz , can be generated, at
least in principle, putting outside the cavity single photon
detectors allowing us to continuously monitor the decay
of the system through the two possible channels (atomic
and cavity dissipation) [38]. Equation (43), indeed, clearly
shows that, reading out the detectors state at t̄ � τAC ,
if no photons has been emitted, then, as a consequence of
this measurement outcome, our system is projected into
the state (1/N)

∑N+2
h=2 |ψ(h)

T 〉〈ψ(h)
T |.

Stated another way, successful measurements, per-
formed at large enough time instants t, generates an un-
correlated state of the two atomic and cavity field subsys-
tems, leaving the matter sample in the statistical mixture
of Dicke states |ϕ(h)

T 〉, satisfying equations (45) and (46).
On the basis of the analysis reported in the previous sec-
tion it is possible to state that such a statistical mixture
is entangled.

Let’s finally observe that the probability P that at
t = t̄ the excitation is still contained in the atomic system
increases with the numberN of atoms, being P = 1−1/N ,
as immediately deducible from equation (43).

6 Conclusive remarks

Summing up, in this paper we have exactly solved the
dynamics of N identical atoms resonantly interacting with
a single mode cavity, taking into account from the very
beginning the presence of both the resonator losses and the
atomic spontaneous emission. We have moreover supposed
that only one excitation is initially injected into the system
of interest and that the atoms are located in such a way
to experience the same cavity field.
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From a mathematical point of view the novelty of our
results is the presentation of an exact way to solve the
master equation (7) of the system, based on the unitary
transformation accomplished by the operator U given by
equation (16). In the new representation associated to
such a specific U , the differential equations governing the
temporal behavior of the density matrix elements ρ̃hj , be-
come indeed much simpler to solve if compared with the
ones ruling the temporal behavior of ρhj . This circum-
stance stems from the fact that in the new representation
only one atom is at the same time coupled both to the
cavity field and to the quantized electromagnetic modes
of the thermal bath. The decoupling of the N − 1 atoms
is a direct consequence of the permutational symmetry
properties acquired by the matter subsystem under the
assumed point-like model condition.

From a physical point of view the new results reported
in this paper have the merit of providing the key for trans-
parently interpreting the origin of the asymptotic occur-
rence of collective subradiant Dicke behavior of the matter
subsystem. The analysis and the discussion presented in
Section 4, highlighting some features of the entanglement
formation process, legitimate the claim that the asymp-
totic condition toward which our physical system is guided
by the loss mechanisms exhibits entanglement. It is of rele-
vance to notice that the form of the stationary conditional
state ρmix appearing in equation (43) is independent from
both Γ and k, while the exponential tendency toward the
stationary condition is governed by the rate k+NΓ . This
means that just the presence of only one loss channel is
sufficient to address the same asymptotic radiation trap-
ping condition, even if the transient duration is character-
ized by a different time decay constant. We wish in addi-
tion to emphasize that if the microscopic model neglects
spontaneous atomic decay, cooperative effects occur even
if the atomic sample is spatially dispersed [39–42]. On the
contrary, the closeness of the N atoms is a necessary re-
quirement when the complete Hamiltonian model (2) is
used (regardless of how bad the cavity is) in order that
a robust entanglement may be conditionally reached in
the matter subsystem. If indeed the distance among the
N atoms is larger than the radiation wavelength, collec-
tive behavior stemming from the interaction of each atom
with a common bath, disappear with the consequence that
the probability of finding in the system the initial energy
goes toward zero with time. We thus may state that the
key for trapping the energy in the atomic sample, induc-
ing a stationary collective Dicke behavior, is the closeness
among the atoms. We wish to conclude presenting some re-
marks concerning the experimental relevance of the prob-
lem discussed in this paper. We begin by observing that,
in view of equation (40), the value of τAC correspondent
to k = 104 Hz and Γ = 103 Hz [5] becomes much less
than 10−2 whatever N is. The experimental implemen-
tation of the specific conditions envisaged in our paper
thus require the ability of locating for a time of the order
of 10−2 s, N atoms in an enough small region within an
optical resonator. In particular the distance between two
arbitrarily chosen atoms of our matter sample has to be

much less than 500 nm. The more and more growing tech-
nological successes registered in the last few years in the
confinement of individual atoms [43–46] or clouds of iden-
tical atoms [43,44,47] with high spatial resolution, suggest
that implementing our conditions in the near future is in
the grasp of the experimentalists.To enforce our claim it
is appropriate and relevant to quote the paper of Ozeri
et al. [47] wherein the authors experimentally demonstrate
the possibility of confining in a blue-detuned optical trap
a sample of 105 rubidium atoms in a region of 0.1÷30 nm
for 0.3 s at a temperature of 24 µK.
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